Telegram Group & Telegram Channel
📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv



tg-me.com/machinelearning_interview/1716
Create:
Last Update:

📄 Scaling Laws for Native Multimodal Models

📌 Исследователи из Sorbonne и Apple проанализировали 457 мультимодальных моделей, чтобы понять, как масштабируются нативные мультимодальные архитектуры (NMM) — обученные с нуля, а не через “приклейку” vision-энкодеров к LLM.

🔍 Главное:
Late-fusion (классика с vision encoder + LLM) ≠ обязательно лучше.
Early-fusion модели, в которых всё учится совместно с нуля — обгоняют по качеству при меньшем количестве параметров, обучаются быстрее и проще в продакшене.
Добавление Mixture of Experts (MoE) даёт прирост — модели учат модальность-специфичные веса, сохраняя ту же цену инференса.
Scaling laws (законы масштабирования) у NMM — почти те же, что у LLM. Можно планировать бюджеты и рост моделей аналогично.

⚠️ Ограничения:
— Пока неясно, как точно это поведение переносится на downstream-задачи.
— Нужно больше экспериментов с разными пропорциями мультимодальных данных.
— Для early-fusion на высоких разрешениях нужны новые подходы к работе с токенами (контекст, пуллинг и т.д.).

📎 Вывод:
Early-fusion — не просто рабочий вариант, а оптимальный выбор для мультимодальных моделей при ограниченных ресурсах. Отказ от “склеек” делает обучение проще, быстрее и дешевле.

Читать

#ai #multimodal #scalinglaws #moe #llm #mlresearch #arxiv

BY Machine learning Interview













Share with your friend now:
tg-me.com/machinelearning_interview/1716

View MORE
Open in Telegram


Machine learning Interview Telegram | DID YOU KNOW?

Date: |

NEWS: Telegram supports Facetime video calls NOW!

Secure video calling is in high demand. As an alternative to Zoom, many people are using end-to-end encrypted apps such as WhatsApp, FaceTime or Signal to speak to friends and family face-to-face since coronavirus lockdowns started to take place across the world. There’s another option—secure communications app Telegram just added video calling to its feature set, available on both iOS and Android. The new feature is also super secure—like Signal and WhatsApp and unlike Zoom (yet), video calls will be end-to-end encrypted.

The global forecast for the Asian markets is murky following recent volatility, with crude oil prices providing support in what has been an otherwise tough month. The European markets were down and the U.S. bourses were mixed and flat and the Asian markets figure to split the difference.The TSE finished modestly lower on Friday following losses from the financial shares and property stocks.For the day, the index sank 15.09 points or 0.49 percent to finish at 3,061.35 after trading between 3,057.84 and 3,089.78. Volume was 1.39 billion shares worth 1.30 billion Singapore dollars. There were 285 decliners and 184 gainers.

Machine learning Interview from it


Telegram Machine learning Interview
FROM USA